All’interno dell’unità si tratteranno gli argomenti base, riguardanti la scienza dei terremoti. In seguito si approfondiranno temi, quali l’intensità macrosismica, la micronizzazione sismica, lo studio delle strumentazioni impiegate nell’ambito sismico e l’interpretazione dei dati acquisiti. Inoltre, si prenderanno come riferimento i recenti eventi sismici sul territorio italiano, al fine di poter trattare compiutamente argomenti, quali: la risposta dell’oscillatore armonico e lo spettro di risposta elastico; lo studio della propagazione delle onde sismiche; le azioni sismiche di progetto, alla base delle Norme Tecniche per le Costruzioni del 2008. Infine saranno trattati gli elementi per la valutazione della pericolosità sismica nel caso di impianti speciali.
Riveste particolare importanza ai fini della progettazione antisismica lo studio della dinamica delle strutture, analizzando in particolare la statica lineare, non lineari, modali, per poi passare alle analisi dinamiche non lineari, considerando sempre l’importanza che riveste l’interazione tra il suolo e la struttura. Infine, si studieranno le azioni sismiche di progetto e i criteri di modellazione strutturale.
In questa unità, sono descritti i criteri base della modellazione agli elementi finiti, con particolare riferimento alle analisi sismiche sia di tipo lineare che non-lineare (push over e time history). Inoltre, sono affrontate modellazioni numeriche inerenti, sia a nuove costruzioni, sia a interventi di riqualificazione strutturale (miglioramento o adeguamento sismico).
L’unità ha il compito di approfondire le tematiche, che sono già state accennate nelle unità precedenti, ponendo maggiore risalto allo studio delle Normative cogenti a livello nazionale ed internazionale (NTC 2008, EC8) ed ponendo particolare attenzione sugli elementi strutturali più soggetti a collasso, quali le unioni trave colonna e le pareti di taglio. In conclusione, si studierà un esempio di edificio ad alta duttilità.
Le strutture prefabbricate, che nell’ultimo terremoto emiliano sono salite agli onori della cronaca per le loro problematiche nel rispondere adeguatamente alle azioni sismiche, saranno analizzate nelle loro componenti e negli elementi principali, quali: le connessioni e i sistemi a telaio. Alla conclusione dell’unità si affronterà un esempio applicativo, al fine di permettere allo studente di mettere in pratica tutti gli insegnamenti teorici appresi.
In questa unità, sono introdotti i criteri base della progettazione delle strutture in acciaio con particolare attenzione al loro comportamento dinamico ed alla corretta progettazione delle unioni tra i vari elementi strutturali. Viene, inoltre, descritto il comportamento dinamico degli elementi secondari (quali le scaffalature metalliche) che hanno rivestito un ruolo notevole nei crolli dei capannoni industriali avvenuti durante gli eventi sismici che hanno colpito l’Emilia del 2012. Infine, vengono riportati i criteri della modellazione numerica delle strutture in acciaio, in modo tale da poterne effettuare una corretta progettazione tenendo conto di tutti gli aspetti fisico-meccanici che le caratterizzano.
L’unità prende in considerazione i componenti di isolamento sismico innovativi e la loro progettazione, in particolare si affronteranno tematiche importantissime quali la dissipazione dell’energia negli isolatori, gli aspetti normativi ed infine si presenteranno vari esempi di isolamento sismico. La seconda parte dell’unità, invece, vedrà lo studente impiegato sulla progettazione diretta di edifici isolati alla base e le successive verifiche, tramite analisi dinamiche non lineari. In conclusione, si affronteranno sistemi di isolamento a comportamento fortemente non lineare per la progettazione di strutture, quali ponti e viadotti.
Intervista col prof. Paolo Riva
Particolare attenzione verrà data alla progettazione e alla verifica delle strutture complesse, quali i ponti. Al principio dell’unità saranno illustrate note storiche e esposto lo stato dell’arte della progettazione dei ponti. Successivamente tramite esempi applicativi verranno presentati i sistemi di adeguamento sismico dei ponti e verranno analizzati gli appoggi strutturali, espressi dalla normativa europea EN1337. A conclusione dell’unità, si effettuerà la progettazione di un ponte, impiegando dispositivi antisismici.
Intervista con l’ing. Giuseppe Pasqualato, Direttore Tecnico Sina SpA, Gruppo Gavio
Partendo dalla caratterizzazione geotecnico-sismica del sito e dalla definizione dell’input sismico, in accordo con le Normative di progettazione strutturale e sismica, l’unità ha il compito di esporre i concetti riguardanti l’interazione terreno-struttura e la risposta locale. Saranno trattati argomenti quali: le fondazioni superficiali e profonde, le opere di sostegno a gravità e flessibili, integrando gli argomenti con lo studio dei metodi di calcolo, della progettazione e delle verifiche di sicurezza. Infine, i principi ed i metodi illustrati saranno ulteriormente chiariti, attraverso l’utilizzo di esempi di calcolo.
Lo scopo di questa unità sarà quello di fornire i fondamenti generali per il calcolo e la progettazione di specifiche tipologie strutturali, quali le strutture composte di acciaio e calcestruzzo, le piastre, le volte e le cupole, le strutture di contenimento di liquidi (cisterne), i condotti per i sotto servizi.
Analizzando il costruito in Italia, per la maggior parte realizzato in muratura, è facile capire quanta importanza rivesta l’analisi sismica per le costruzioni esistenti. Tra gli aspetti più critici, si annoverano le problematiche indotte in tali tipi di strutture dall’azione sismica, al fine di poter fornire una corretta valutazione della vulnerabilità sismica dell’edificio stesso. Saranno inoltre presentate le strategie e le tecniche d’intervento, riguardanti edifici in muratura esistenti, sempre prendendo in considerazione diversi casi studio.
L’unitá ha l’obiettivo di far conoscere allo studente i principi fondamentali riguardanti la scelta e l’utilizzo di strutture Post-Tese (PT) in cemento armato in ambito di edilizia civile e industriale. Verranno approfonditi aspetti realtivi al PT Business Development, dall’identificazione delle opportunita’, allo sviluppo della proposta, fino all’impostazione, consegna e chiusura del progetto. Verranno presentate valutazioni economiche con particolare riferimento ai vantaggi inerenti l’utilizzo di tali strutture rispetto a soluzioni piu’ tradizionali. Verranno trattati aspetti di progettazione e analisi con l’impiego di programmi di calcolo tra i più comuni nel settore, sia in Italia che all’estero. L’unitá prendera’ inoltre in esame la gestione dei tempi e dei costi in fase di progettazione ed installazione, la produzione di report di calcolo e disegni costruttivi, inspezioni in cantiere e gestione delle modifice in fase di installazione.
Intervista con l’ing. Diego Dellatorre, Associate Director WSP
Il monitoraggio strutturale (in inglese Structural Health Monitoring, SHM) e’ un processo che consiste nella misura e analisi della risposta strutturale al fine del rilevamento di eventuali fenomeni di degrado o di danno. Tali informazioni servono da supporto ai processi decisionali per la gestione della manutenzione delle strutture monitorate e di eventuali situazioni di emergenza a valle di eventi eccezionali. In questa unita’ didattica vengono illustrate le motivazioni e i vantaggi connessi con l’utiizzo di sistemi di monitoraggio periodico e continuo, i metodi per l’identificazione di danno e/o degrado sulla base della risposta a vibrazioni e le modalita’ con cui le informazioni fornite da tali sistemi possino essere utilizzate per la gestione di processi decisionali e sistemi di allerta. Le lezioni comprendono una parte teorica seguita dall’illustrazione di applicazioni a strutture reali. L’ultima parte dell’unita’ sara’ dedicata all’illustrazione dei riferimenti normativi e delle linee guida esistenti a livello italiano ed europeo per l’applicazione di tali tecniche a strutture civili.
Intervista con la professoressa Maria Pina Limongelli
Nell’ottica della progettazione integrata, si illustrano le procedure finalizzate alla creazione delle interfacce tra il progetto architettonico e il progetto strutturale (Revit str e Tekla str) nonché quanto necessita al fine di creare il modello FEM per le analisi specialistiche con software come Midas o Robot.
L’applicazione del BIM viene riportato a scala territoriale con riferimenti al GIS, e a scala di infrastrutture. Vengono illustrate procedure e strumenti finalizzati alla progettazione e inserimento nel territorio di infrastrutture con l’ausilio di Infraworks, Civil 3D e altri tools.
DIREZIONE
prof.ssa arch. ing. Paola Ronca
tel: +39 02 2399 4381 | paola.ronca@polimi.it
SEGRETERIA DIDATTICA
dott. arch. Maria Grazia Mastrorillo
tel: +39 02 2399 4341 |
mariagrazia.mastrorillo@polimi.it
INFO E ISCRIZIONI
dott. ing. Marco Zucca
tel: +39 02 2399 4341 | marco.zucca@polimi.it